

Utilization of Post Consumer Shingles in Asphalt Mixtures

R. Christopher Williams Ross Bentsen Andrew Cascione February 4, 2010

Presentation Outline

Introduction

Federal requirements Source material properties Mix design & properties Ongoing Research National Pooled Fund Study – Illinois Tollway Concluding thoughts

Introduction

Asphalt shingles Manufacturing scrap - Post consumer 60% of shingle sales are due to storm damage Asphalt shingles have multiple beneficial components for use in asphalt mixtures - Asphalt, Aggregate, Fibers, & Limestone filler

23 CFR Section 637B

Quality Assurance Procedures for Construction

637.201 Purpose.

To prescribe policies, procedures, and guidelines to assure the quality of materials and construction in all Federal-aid highway projects on the National Highway System

- 637.203 Definitions.
- 637.205 Policy.
- 637.207 Quality assurance program.
- 637.209 Laboratory and sampling and testing personnel qualifications.

Product Quality Characteristics

Source material- recycled shingles

- Limit loads of post-consumer shingles to residential buildings with four or fewer dwelling units (these buildings are not "regulated facilities" according to state and federal <u>NESHAP 40 CFR Part 61, Subpart M</u>).
- Asbestos free
- Deleterious material
- Grind size
- Moisture content

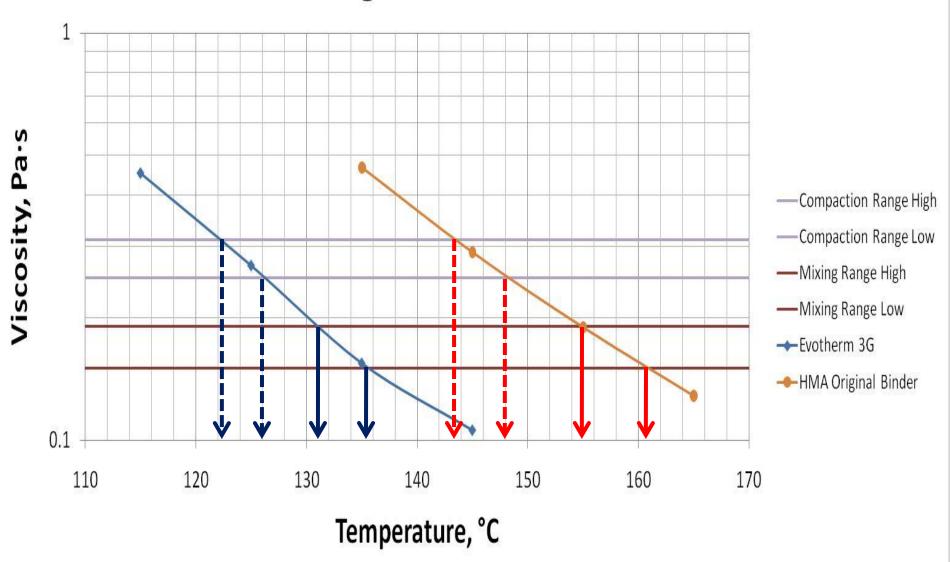
Product Quality Characteristics

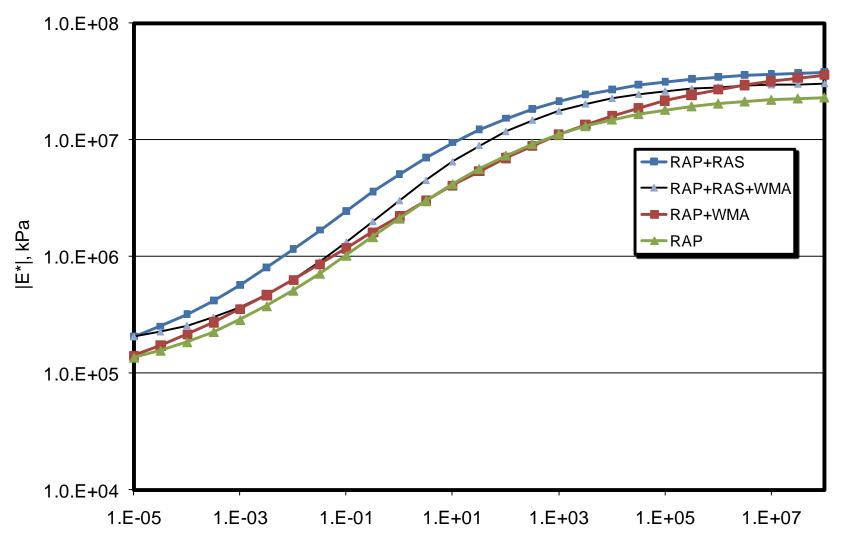
Asphalt mixture (hot mix or warm mix)

- Limiting recycled asphalt binder content
- Binder content
- Voids criteria (lab air voids, field air voids, VMA , etc)

Smoothness

Sorting is manual





Challenge- Many new technologies in the asphalt industry Recycled shingles High RAP mixes Fractionated RAP Warm Mix Asphalt - Foaming Technologies - Organic Additives - Chemical Additives Bio Asphalt (non-petroleum)

Viscosity Comparison of Evotherm 3G & Original HMA Binder

Comparison of Field vs. Lab

Frequency, Hz

What are our expectations?

 Performance expectations are met
 Materials and production/construction processes are economical

- Integration of sustainability
 - Recycling
 - Reduction of emissions
 - Carbon credits

Mix Design Approaches for Integration of RAS into HMA

Development of Mixture Design

- Process is no different than current methods of asphalt mix design development.
- Need to pay attention to integration of RAS into batching materials
 - Proportioned materials should be pre-blended prior to placement into oven.
 - Ensures even distribution of RAS throughout aggregate structure.

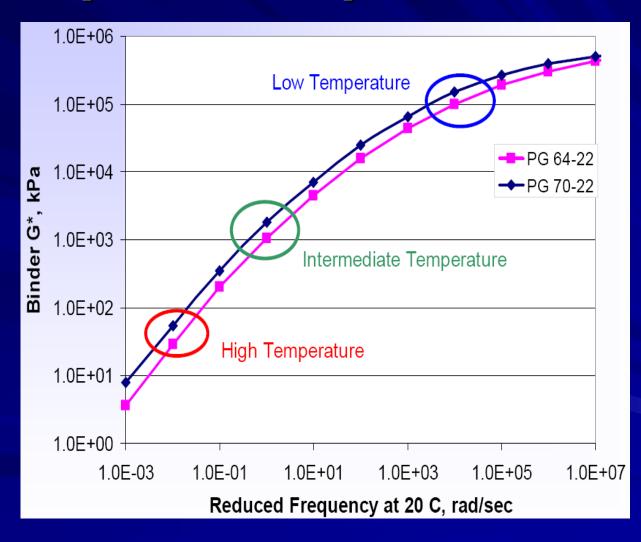
Outcomes of Mix Design

- Virgin binder content will be lower when RAS is utilized.
- 60-80% of RAS binder will be integrated into HMA mix.
- Voids in the Mineral Aggregate will increase with RAS utilization.
- Contribution of RAS binder to overall binder grade will not be known.....but!

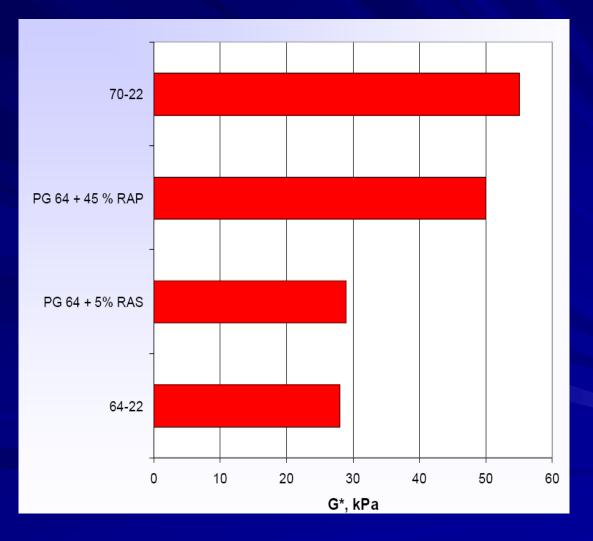
Challenges

- AASHTO M323 binder recommendations assume complete mixing of new and recycled binder
- AASHTO M323 does not address RAS binders
- RAS rheology is different than paving binders

RAS Contribution to Performance Grade


- Recovered binder properties
- Estimated binder properties through mix testing
 - Dynamic modulus testing
 - Very sensitive to binder properties
 - Estimate effective performance grade
 - Hirsch and Witzcak Models
 - Mix Modulus = f(Binder modulus, VMA, & VFA)

Simple Performance Test



Graphical Representation

High Temperature

Low Temperature

HMA Production Considerations

Production Facilities

- Storage of RAS is for a limited time
 - -2-3 weeks
 - Can blend with a sand to extend storage time
- Counter Flow Drum is preferred
- 2nd Recycle Chute is preferred upstream of RAP
- How is liquid asphalt paid for?
 - Separate- need to be able to track added RAS

Ongoing Research Work

National Pooled Fund Study
 Illinois Tollway
 Region 5 EPA
 Headquarters EPA

Project Schedule

Tæsk	2009			20	2011			
IGSR	Oct-Dec	Jan-Mar	Apr-Jun	Jul-Sept	Oct-Dec	Jan-Mar	Apr-Jun	Jul-Sept
1. Literature Review			ž.		,			
2. QC/QA for Processing & Sourcing RAS								
3. & 6. Performance Testing of Design & Field Mixes								
4. Construction of Demonstration Projects		i -						
5. Characterization of RAS, Recovered Mix & Binders	96 1			y F				
7. Performance Surveys of Demonstration Projects		s.						
8. Statistical Analysis								
9. Development of the Final Report								

2009 Tollway RAS Research

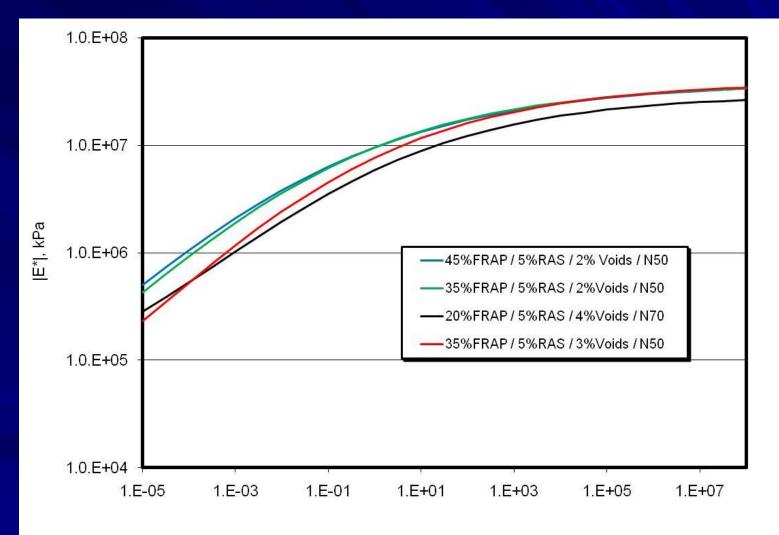
Recycled asphalt shingles (tear-offs) into high FRAP mixes

- Shoulder Binder and Bases
 - 5% RAS with 3 levels of FRAP (25%, 35%, 45%)
- Shoulder Surface
 - 5% RAS with 20% FRAP
- SMA Surface (SBS PG 76-22)
 - -5% RAS with 15% Fine FRAP

2009 Tollway RAS Research

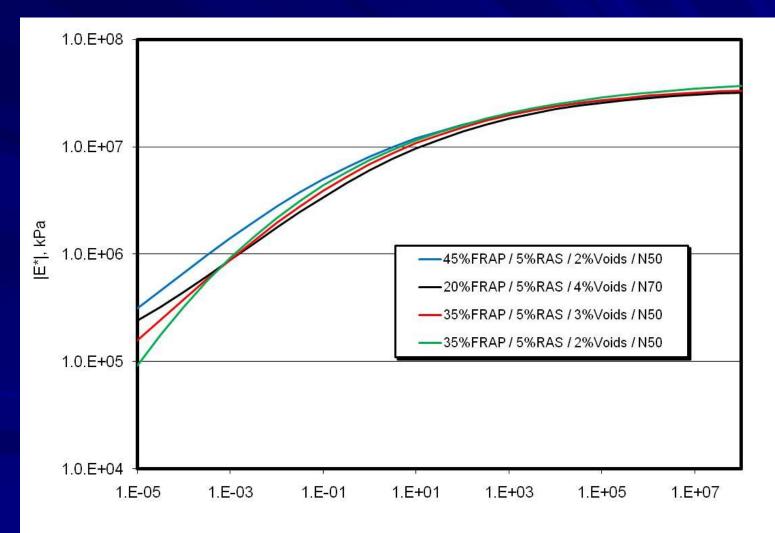
2009 Tollway RAS Research

3.5 mile length of Outside Shoulder: I-90 Placement July-August 2009 8 Test Sections 4 Different RAS Shoulder Binder Mixes - 850 to 1300 tons each Standard (25% FRAP) and RAS Shoulder Surface placed over each - 1300 tons RAS Shoulder Surface

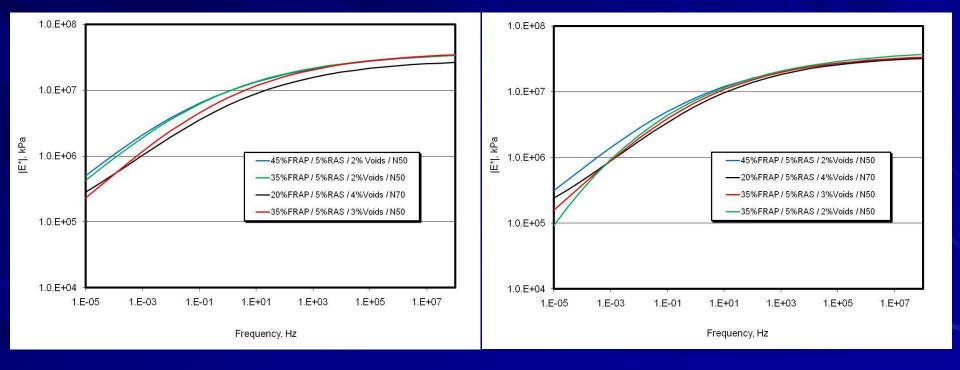

Tollway RAS Test Sections

	Illinois Tollway Shingle Research Test Section Layout													
PROJECT	I-08-5543 – Jane Addams Memorial Tollway – I-90													
LOCATION	Westbound Outside Shoulders													
TEST SECTION	1	2	3	4	15+	4	5		5	6	7	8	N/A	
SECTION LENGTH, R	2345	2214	1926	1990		826	1714	Burr	630	1388	2592	2150		
SURFACE MIX NUMBER	90BITRS05	90BI	IT0823	90BITRS05	Trail Bridge	90BI	TRS05	Oak Bridge		90BIT(90BIT0823		90BITRS05	
SURFACE MIX TYPE	20% FRAP / 5% RAS N70 SCS	25% FR/	AP N70 SCS	20/5 RAS N70 SCS			FRAP / 5 N70 SCS			25% FRAP I	N70 SCS 20% FRAP / 5% F		AS N70 SCS	
STAR		339+80 MP 71.7	295+40	278+50- 276+00			250+60 - 248+60		242+30 202+50 MP 73.5		202+50 MP 74 1/4	368+80		
DATE PLACED	8/10/2009	8/10	10/2009 8/10/20				09	09 8/10/2				2009 8/10/200		
TONNAGE	256.41	61	16.6	556.5			1				633.09		532.69	
BASE MIX NUMBER	90BITR	504	90BITRS	02	ile.	90BITR502	90BITRS03	Burr		90BITRS03	90B	ITRS01	MILLED MATERIAL	
BASE MIX TYPE	25% FRAP/5% RAS BIT BASE 35% FRAP/5% F		35% FRAP/5% RAS	S BIT BASE	Trad Bridge SSN FRAP/ SN RAS BIT DASE		45% FRAP/ 5% RAS BIT BASE	Calk Bridge		45% FRAP/ 5% RAS BIT BASE	35% FRAP/5% RAS N50 BCS			
STAR	363+25	317+66 MP 72-1			278+50- 276+00		267+74 MP 73.1	250+60- 245+60			228+42 73.8	181+00 MP 74.7		
DATE PLACED	o 7/29/2009 7			7/29/2009	//29/2009			7/29/2009				7/30/2009		
TONNAGE	1272.96			1295.86			846.23				1314.36			

Not to Scale


Lab Tests Lab & Field Produced Mixes Dynamic modulus Beam fatigue Disc Compact Tension Recovered Binders

Laboratory Mixes


Frequency, Hz

Field Mixes

Frequency, Hz

Lab vs. Field

Summary

- The RAS binder contribution to the "mix" performance grade of combined binder can be reasonably estimated
- Warm mix asphalt technology is employing the same approach
- Warm mix asphalt & shingles are synergistic
 The approach is consistent with future mix performance testing

Concluding thoughts/questions

Integrating shingles into asphalt mixture specifications is challenging.

- New technologies
- Composition of shingles is changing
- Are post consumer shingles a solid waste today, in 5 years, or 10 years?

Two demonstration projects have been placed in Indiana- lab testing of materials will begin soon.

Acknowledgements

Steven Gillen, Illinois Tollway Jay Behnke, STATE Testing Ray Bonaguist, AAT Chris Robinette, Granite Construction Jason Bausano, Navy Tamer Breakah, Iowa State University Andrea Kvasnak, NCAT

Thank You! & Questions?